LIMS and Data Pipelines

Fox Chase Cancer Center

Why a LIMS

- Data Integrity
 - Protocol management (what was done)
 - Secure storage (what resulted)
 - Integrated QA/QC (how reliable)
- Data Communication
 - Electronic storage
 - APIs

FCCC LIMS Projects

- Existing LIMS for Flow Cytometry
 - Web based Experimental Design
 - XML Communication to BD FACSVantage
 - Manual Web Link to BD FACScan (or other)
- Developing LIMS for Proteomics
 - Based on caLIMS
 - Initial Workflow and Data Schema Completed

FCCC Data Pipelines

- FGDP (Bioinformatics, **20**, 282, 2004)
 - Web based microarray analysis
 - Automated simultaneous analyses
 - Java component architecture
- ASAP (Bioinformatics, 19, 675, 2003)
 - Automated retrieval and piping of web data
 - mySQL with automated Perl script generation

Development Plan

- Proteomics LIMS
 - Deploy initial database (done)
 - Work with researchers to provide minimally invasive integration with workflow
 - Refine through user feedback
- Links to Data and Annotation Pipelines
 - Automated QC/QA through pipeline
 - Automated updating of annotations

Bioinformatics

Component Architecture

LIMS

- JSP for web interactions
- JDBC for database connectivity
- Multiplatform, multidatabase development

FGDP

- OO design patterns, easy module creation
- Open source, share modules or package
- Implements several TIGR MEV modules

Architecture and Vocabularies

- Linking Systems and Data
 - XML and APIs for data sharing
 - Enable stable links between systems
- Identified Need for Vocabulary
 - Desire to link basic and clinical data (melanoma cell line to melanoma tumor)
 - Exploring limited vocabularies now
 - Need input from Vocabulary Group

protLIMS Data Flow

protLIMS Sample Schema

Development Plan

- Update Schema and Workflow
 - Work with adopters to generalize LIMS
 - Plan for additional data types
- Develop Interface
 - Work with adopters and FCCC researchers
 - Iterative development through matched development and production servers
- Example of flowLIMS

flowLIMS

Interface

Project Page after LDAP Login

Options include creating interactive, flexible groups

Users set up cell types and stains that they routinely use

Interface

Virtual pipetting allows users to easily layout experiment

After pipetting, users can see what is in each well

Interface

Experiments can be published or private

Automatic generation and downloading of FlowJo Summary Files

Additional files can be added to system

flowLIMS Schema

FGDP

- Automated, multiple, simultaneous analyses of functional genomics data
- Java based using RMI for distribution
- Plan to use for QA/QC as well as data analysis for Proteomics LIMS

Models Data Flow

Parsing/Image Analysis

- Normalization

Statistical Analysis

Filtering

Pattern Recognition

Image Generation

Output Parsing

functional genomics data pipeline

Modules selected:

Run

LIMS and Pipelines

- Open Source (Components)
 - Either GNU GPL or LPL
 - Full Documentation and Support
- Integration with Adopters
 - Feedback required for Development
 - Group Expertise in Science and Software
- Integration with Working Groups
 - Vocabularies
 - Architecture

Development Team

- Jeffrey Grant, Architect
- Yue Zhang, Sr. Programmer
- Elizabeth Goralczyk, Sr. Prog/Analyst
- Michael Slifker, Sr. Prog/Analyst
- Luke Somers, Prog/Analyst
- Olga Tchuvatkina, Prog/Analyst